

Overview

- Drivers of NPD and innovation
- HACCP & hazards associated with novel proteins
- Microbiological food safety
 - Preservation toolkit risk mitigation
 - The hurdle approach to food preservation
 - The Food Safety Objective (FSO)
 - Validation: challenge & shelf-life testing
- Allergens & food safety

Hazards associated with novel proteins

The role of HACCP in your products' safety

- All businesses should seek to have a Food Safety Program
 - Outlines how a business will identify, control and manage food safety hazards during manufacture

Hazard

 What are the potential hazards for your product/process? (microbiological, chemical, allergen & physical)

Analysis

What is the risk & potential consequence of each hazard?

Critical

- What can be implemented to mitigate (prevent or reduce) risk?
 - Identify where in the process to apply control -

Control

Critical Control Points

Point

- Identify which factors to control Critical Control Factors
- Monitoring: how do we know we are applying control measures appropriately?

Food preservation toolkit: the options

Inhibiting/delaying growth of microorganisms

- Reduce temperature: freezing, chilling
- Reduce available water (water activity): drying, curing (salting), conserving (sugar)
- Reduce pH: acidifying, fermenting
- Preservatives: antimicrobial compounds, organic/inorganic acids, smoke
- Removal/Replacement of oxygen (vacuum/modified atmosphere packaging)

Inactivating microorganisms

- Physical processing: heat (pasteurisation/canning), pressure (HPP)
- Chemical sanitisers: chlorine & other chemicals to surface inactivate microorganisms
- Some formulations: e.g. mayonnaise (acid, salt, pH, water activity)

Intrinsic: in the food Extrinsic: outside the food Processing: applied to the food

7 | Product innovation: understanding food safety hazards and how to control them | Sandra Olivier

Microbiological safety - finding the balance Meeting our Food Safety Objectives without compromise Need to control / eliminate microbes Conventional Tastes great & is healthy Safety / stability assured Innovative

Smarter food safety

OLD – prescriptive, inflexible

- Traditional food safety based on adherence to prescriptive approaches to achieve compliance
 - Inflexible prescribe approach for achieving the goal
 - Difficulties arise for validating novel technologies constrains innovation

NEW – smarter, more flexible → innovation

- (ICMSF, 1998) proposed new scheme for management of microbial hazards in foods
 - The Food Safety Objective (FSO) approach defines the goal
 - Flexible <u>does not prescribe approach</u> for achieving the goal
 Permits demonstration of equivalence of control measures <u>supports innovation</u>

How to validate a process - A challenge!

Challenge test

How your product will perform if faced with a 'worst case' microbe scenario

CHALLENGED

Shelf-life study

How your product will perform given the microbes in it at the time of production

NOT CHALLENGED

- Deliberately inoculate with a **specific microorganism** at a known concentration
- Includes both pathogenic (safety) & spoilage (stability) microorganisms
- Challenging performance related to
 - Formulation hurdles (pH, $a_{\rm w^{\prime}}$ salt): Inactivation / Inhibition
 - Process efficacy (thermal, HPP, chemical sanitisation): Inactivation
 - Shelf-life conditions (atmosphere, packaging, temperature, time): Inhibition

15 | Product innovation: understanding food safety hazards and how to control them | Sandra Olivier

Allergens

- Allergens are proteins found in common food ingredients
- Food allergies affect 2% of Australian adults but are estimated to affect around 6-8% of children
- 1 in 10 babies aged 12 months now have food allergy in Australia

Allergens required to be labelled in Australia

- Cereals containing gluten wheat,
 rye, barley, oats and spelt
- Crustacea
- Egg
- FISH
- Fish
- Peanuts
- Soybeans
- Sesame seeds
- Tree NutsLupin
- Added Sulphites (10m g/kg or more)

lide acknowledgement: Fiona Flemina

Allergen labelling requirements (FSANZ) Allergen labelling is required when present as: an ingredient; or an ingredient of a compound ingredient; or a food additive or component of a food additive; or a processing aid or component of a processing aid. Cross Contact Statement (not mandatory) when appropriate)

Summary

Consumer demands & a focus on healthier foods are driving new product development & innovation in the food industry

NPD must be approached with food safety front & centre; includes HACCP for identifying microbiological, chemical, physical & allergen hazards

Microbiological food safety incorporates an understanding of the hurdle concept & food safety objectives & applying strategies to reduce risk

Challenge testing plays a critical role in assessing the microbiological safety & stability of foods

Allergens are proteins that can cause reactions in consumers; be aware that novel proteins sources may introduce new allergen hazards. Check with FSANZ

