Real-Time Machine Learning for Power Grid SCADA Alarm Event Detection Decision Support

Chen Liu¹, Geordie Dalzell¹, Elena Kranz², Xinghuo Yu¹, Adrian Kelly³, Mahathir Almashor⁴

¹School of Engineering, RMIT University, Australia.

²Technical University of Berlin, Germany.

³Electric Power Research Institute (EPRI), Ireland.

⁴Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia.

Summary

- Introduction
- Methodology
 - Alarm event detection model training
 - Alarm event decision support
- Empirical Study
- Conclusion

Introduction

- Intelligent analysis and regulation
 - Enhancing power grid efficiency and reliability.
- Supervisory Control And Data Acquisition (SCADA) and Energy Management System (EMS)
 - Two major systems for power fault detection.
- Detect anomalous behaviors in SCADA systems is the key challenge.

Fig. 1 The operation of the SCADA/EMS system in power grid [1]

Introduction

- Intelligent alarm processing in power systems
 - Rule-based systems for alarm classification. [2,3]
 - Expert systems: make decision support faster. [4,5,6]
 - Mixed integer linear programming for false alarms detection. [7,8]
- Motivation:
 - Current research on real-time power system SCADA setups remains limited.
 - A critical need exists to develop solutions for the early detection and mitigation of potential stability events.
 - Previous work focuses primarily on peak alarm periods, leaving operators with insufficient time to respond to incidents and learn from past experiences.

Introduction

Contributions:

- Novel Deep Neural Network (DNN) Framework
 - Offline training using historical alarm data for robust generalization.
 - Accurate detection of critical SCADA alarm events, especially during peak periods when operators require enhanced decision-making support.
- Online Decision Support Framework
 - Combines a pre-trained DNN with a large language model (LLM).
 - **Real-time alarm detection** and prioritization of event information based on historical urgency and relevance.
 - Provides a holistic view for operators, supporting quick and informed decision-making.

Methodology

Fig. 2 The framework of developed alarm event detection system.

Neural Network Comparison for SCADA Alarm Detection

Architecture	Operation	Strengths	Limitations	Suitability for SCADA
FNN	Sequential processing, no data assumptions	Versatile, simple, scalable	Requires large data & time for training	Best fit
CNN	Pattern recognition in hierarchical layers	Great for feature extraction (images)	Not suitable for non-hierarchical data	Not ideal
RNN	Processes sequential data, maintains memory	Good for time-series & evolving data	Struggles with chaotic, unordered inputs	Not suitable

Recurrent Neural Network (RNN)

Alarm event decision support

 This distance measure serves as a generalized form encompassing both Euclidean and Manhattan distance metrics [9]

٨

$$SD = \left(\sum_{i=1}^{n} |e_i - E_i|\right)^{1/p}$$

where e_i represents the detected alarm event, while E_i denotes a previous alarm event. The parameter p signifies the order of the norm.

Empirical Study

- Chattering event detection
 - SCADA alarm data:
 - From May 1, 2017, to May 25, 2017.
 - Training set: from 00:00:00 on May 1, 2017, to 23:59:59 on May 24, 2017.
 - 2,572,919 chattering events and 2,132,938 non-chattering events.
 - Testing set: from 00:00:00 to 01:00:00 on May 25, 2017.
 - 3,717 chattering events and 3,035 non-chattering events.

	EventId	EventTimeStamp	SCADA_Category	тос	AOR	Priority_Code	Substation	DeviceType	Device	event_message	chattering
0	26	2017-05-01 00:00:04	МН	TMS	TOCGR	3	Substation1002	RELAY	Device1089	#1 PRIMARY RELAY FAIL	1
1	45	2017-05-01 00:00:06	МН	TMS	TOCGR	3	Substation1002	RELAY	Device1089	#1 PRIMARY RELAY NORMAL	1
2	147	2017-05-01 00:00:47	МН	TMS	TOCGR	3	Substation1002	RELAY	Device1089	#1 PRIMARY RELAY FAIL	1
3	150	2017-05-01 00:00:49	МН	TMS	TOCGR	3	Substation1002	RELAY	Device1089	#1 PRIMARY RELAY NORMAL	1
4	108	2017-05-01 00:00:31	МН	TMS	TOCGR	3	Substation1002	RELAY	Device1090	#2 PRIMARY RELAY FAIL	0
5	125	2017-05-01 00:00:35	МН	TMS	TOCGR	3	Substation1002	RELAY	Device1090	#2 PRIMARY RELAY NORMAL	0
6	39	2017-05-01 00:00:05	МН	TMS	TOCGR	3	Substation1049	BLKCAR	Device643	SIGNAL RECEIVED NORMAL	0
7	18	2017-05-01 00:00:03	ML	TMS	TOCSR	4	Substation1051	BLKCAR	Device292	SIGNAL RECEIVED TRIP ENABLED	0
		VERSILI						1			

Empirical Study

Empirical Study

Alarm event detection

.....

Fig. 5 The confusion matrix of testing data.

	D		Event	EventId	EventTimeStamp	SCADA_Category	TOC	AOR	Priority_Code	Sub
h5 file: Chatter_model.h5	Browse	1	Υ	4710726	2017-05-25	MH	TMS	TOCGR	3	Substat
		2	γ	4710727	2017-05-25	ML	TMS	TOCGR	4	Substa
Input an alarm manually:		3	γ	4710742	2017-05-25	MH	TMS	TOCGR	3	Substa
(Substation, DeviceType, Device, Event_message)		4	γ	4710743 2017-05-	2017-05-25	ML	TMS	TOCGR	4	Substa
Detect		5	γ	4710737	2017-05-25	МН	TMS	ТОСВМ	3	Substa
beleet		6	γ	4710776	2017-05-25	MH	TMS	тосвм	3	Substa
Input alarms from a csv file:		7	γ	4710791	2017-05-25	МН	TMS	тосвм	3	Substa
csv file: test_input.csv	Browse	8	γ	4710799	2017-05-25	МН	TMS	тосвм	3	Substa
Detect		9	γ	4710819	2017-05-25	МН	TMS	ТОСВМ	3	Substa
		10	γ	4710826	2017-05-25	МН	TMS	ТОСВМ	3	Substa
O Show all	_	11	v	4710850	2017-05-25	МН	TMS	ТОСВМ	3	Subst
Show event only	F	Resul	t:			МН	TMS	TOCMN	3	Substa
						МН	TMS	TOCMN	3	Substa
Result:		Jumb	er of inr	out: 6752		МН	TMS	TOCMN	3	Substa
Number of input: 6752	ľ	VUITIL	ier of ing	Jul: 0732	· –	МН	TMS	TOCMN	3	Substa
Number of event: 3813						МН	TMS	TOCMN	3	Substa
Number of non-event: 2939	→ ^	Numb	er of ev	ent: 381	3	МН	TMS	TOCMN	3	Substa
Detection Accuracy: 88.89%						МН	TMS	TOCMN	3	Substa
Running time: 0.83s	1	Numb	er of no	n-event:	2939	МН	TMS	TOCMN	3	Substa
						МН	TMS	TOCMN	3	Substa
	0.00/	MH	TMS	TOCMN	3	Subst				
	Detection Accuracy: 88.89%					МН	TMS	TOCMN	3	Substa
						MH	TMS	TOCMN	3	Subst
	F	Runni	ina time:	: 0.83s					-	

Fig. 6 The real-time SCADA alarm event detection.

– 🗆 🗙

All cur	rent events:										
	EventId	:ventTimeStam	5CADA Categor	у тос	AOR	Priority Code	Substation	DeviceType	Device	event message	chatter
1	4710726	2017-05-25	MH	TMS	TOCGR	3	Substation1027	LN	Device4416	TRANSMITTER	1
2	4710727	2017-05-25	ML	TMS	TOCGR	4	Substation1027	LN	Device4416	#1 CARRIER LE	1
3	4710742	2017-05-25	МН	TMS	TOCGR	3	Substation1027	LN	Device4416	TRANSMITTER	1
4	4710743	2017-05-25	ML	TMS	TOCGR	4	Substation1027	LN	Device4416	#1 CARRIER LE	1
5	4710737	2017-05-25	MH	TMS	тосвм	3	Substation1104	RELAY	L593_SEL421	SYSTEM	
6	4710776	2017-05-25	МН	TMS	тосвм	3	Substation1104	RELAY	L593_SEL421	SYSTEM ALARM	4
7	4710791	2017-05-25	мн	TMS	TOCBM	3	Substation1104	RELAY	L593_SEL421	SYSTEM ALARM	1
8	4710799	2017-05-25	мн	TMS	TOCBM	3	Substation1104	RELAY	L593_SEL421	SYSTEM	1
9	4710819	2017-05-25	МН	TMS	TOCBM	3	Substation1104	RELAY	L593_SEL421	SYSTEM	1
10	4710826	2017-05-25	МН	TMS	TOCBM	3	Substation1104	RELAY	L593_SEL421	SYSTEM ALARM	1
11	4710850	2017-05-25	мн	TMS	TOCBM	3	Substation1104	RELAY	L593_SEL421	SYSTEM	1
12	4710717	2017-05-25	МН	TMS	TOCMN	3	Substation118	XFMR	SPARE_XFMR	OIL LEVEL	1
fi The n	Find More rom Alarm GPT earest past event:						Ļ				
	EventId	EventTimeStamp S	CADA_Category	тос	AOR	Priority_Code	Substation	DeviceType	Device	event_message	chattering
1 47	710673	2017-05-24 N	ін ті	MS	ТОСВМ	3	Substation1104	RELAY	.593_SEL421	SYSTEM	
	Diffe	rent				9	Same				
Distan	nce: 0.0										

UNIVERSITY

12

×

Alarm event detection

Main Event Track Alarm GPT

Alarm GPT:

Question about alarm: 4710791,2017-05-25 00:00:21,MH,TMS,TOCBM,3,44,39,1668,10108,1

You:

What the time between this alarms and last the most similar alarm?

Alarm GPT:

To find the time difference between the two alarms, I will subtract the EventTimeStamp of the second alarm from the EventTimeStamp of the first alarm: 2017-05-25 00:00:03 - 2017-05-24 23:59:36 = 27 seconds

You:

Tell me about the power grid chattering alarm

Alarm GPT:

According to the alarm records, the "chattering" alarm is reported in both records: 4710737,2017-05-25 00:00:03,MH,TMS,TOCBM,3,Substation1104,RELAY,L593_SEL421,SYSTEM NORMAL,1 4710673,2017-05-24 23:59:36,MH,TMS,TOCBM,3,Substation1104,RELAY,L593_SEL421,SYSTEM NORMAL,1 The "chattering" is reported in the "event_message" field, which suggests that the L593_SEL421 device, a relay, is experiencing some kind of abnormal behavior, possibly related to its normal functioning. However, in both cases, the reported status is "SYSTEM NORMAL", indicating that the issue was likely minor or temporary.

Enter a message		Send
		Clear
Done	Fig. 8 The example of decision support system for chattering event.	

×

Conclusion

- A real-time machine learning framework was developed specifically for SCADA alarm event detection.
- The introduction of a DNN architecture enhances the ability to efficiently detect real-time alarm events.
- A specialized algorithm for historically relevant event search supports decisionmaking.

References

[1] Bi, S. and Zhang, Y.J.A., 2017. Graph-based cyber security analysis of state estimation in smart power grid. *IEEE Communications Magazine*, 55(4), pp.176-183.
[2] Tesch, D.B., Yu, D.C., Fu, L.M. and Vairavan, K., 1990. A knowledge-based alarm processor for an energy management system. *IEEE Transactions on power systems*, 5(1), pp.268-275.

[3] Sun, G., Ding, X., Wei, Z., Shen, P., Zhao, Y., Huang, Q., Zhang, L. and Zang, H., 2019. Intelligent classification method for grid-monitoring alarm messages based on information theory. *Energies*, *12*(14), p.2814.

[4] Hor, C.L., Crossley, P.A. and Watson, S.J., 2007. Building knowledge for substation-based decision support using rough sets. *IEEE Transactions on Power Delivery*, 22(3), pp.1372-1379.

[5] Sun, J., Qin, S.Y. and Song, Y.H., 2004. Fault diagnosis of electric power systems based on fuzzy Petri nets. *IEEE Transactions on Power Systems*, 19(4), pp.2053-2059.

[6] Yongli, Z., Limin, H. and Jinling, L., 2006. Bayesian networks-based approach for power systems fault diagnosis. *IEEE Transactions on Power Delivery*, 21(2), pp.634-639.

[7] Guo, W., Wen, F., Liao, Z., Wei, L. and Xin, J., 2009. An analytic model-based approach for power system alarm processing employing temporal constraint network. *IEEE Transactions on Power Delivery*, *25*(4), pp.2435-2447.

[8] Jiang, Y. and Srivastava, A.K., 2019. Data-driven event diagnosis in transmission systems with incomplete and conflicting alarms given sensor malfunctions. *IEEE Transactions on Power Delivery*, 35(1), pp.214-225.

[9] Chiu, W.Y., Yen, G.G. and Juan, T.K., 2016. Minimum manhattan distance approach to multiple criteria decision making in multiobjective optimization problems. *IEEE Transactions on Evolutionary Computation*, *20*(6), pp.972-985.

Thanks for Listening

Questions?

