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Introduction

• Intelligent analysis and regulation 
• Enhancing power grid efficiency 

and reliability.

• Supervisory Control And Data 
Acquisition (SCADA) and Energy 
Management System (EMS)
• Two major systems for power 

fault detection. 

• Detect anomalous behaviors in 
SCADA systems is the key 
challenge.

Fig. 1 The operation of the SCADA/EMS system in power grid [1]
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Introduction

• Intelligent alarm processing in power systems
• Rule-based systems for alarm classification. [2,3]
• Expert systems: make decision support faster. [4,5,6]
• Mixed integer linear programming for false alarms detection. [7,8]

• Motivation:
• Current research on real-time power system SCADA setups remains limited.
• A critical need exists to develop solutions for the early detection and mitigation 

of potential stability events.
• Previous work focuses primarily on peak alarm periods, leaving operators with 

insufficient time to respond to incidents and learn from past experiences.
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Introduction

• Contributions:
• Novel Deep Neural Network (DNN) Framework

• Offline training using historical alarm data for robust generalization.
• Accurate detection of critical SCADA alarm events, especially during peak 

periods when operators require enhanced decision-making support.

• Online Decision Support Framework
• Combines a pre-trained DNN with a large language model (LLM).
• Real-time alarm detection and prioritization of event information based on 

historical urgency and relevance.
• Provides a holistic view for operators, supporting quick and informed 

decision-making.
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Methodology
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Fig. 2 The framework of developed alarm event detection system.
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Neural Network Comparison for SCADA Alarm Detection

Architecture Operation Strengths Limitations Suitability for 
SCADA

FNN Sequential processing, no data 
assumptions Versatile, simple, scalable Requires large data & time for training Best fit

CNN Pattern recognition in hierarchical 
layers

Great for feature extraction 
(images) Not suitable for non-hierarchical data Not ideal

RNN Processes sequential data, 
maintains memory

Good for time-series & evolving 
data

Struggles with chaotic, unordered 
inputs Not suitable

Feedforward Neural Network FNN Convolutional Neural Network (CNN) Recurrent Neural Network (RNN)
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Alarm event decision support
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Fig. 3 The relevant alarm event searching process.

• This distance measure serves as a generalized form encompassing both 
Euclidean and Manhattan distance metrics [9]

<latexit sha1_base64="z5AsUzgr3rcsX8WHVdr9sKrvHYA="></latexit>
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!1/p

where ei represents the detected alarm event, while Ei denotes a previous alarm 
event. The parameter p signifies the order of the norm.
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Empirical Study

• Chattering event detection
• SCADA alarm data:

• From May 1, 2017, to May 25, 2017.
• Training set: from 00:00:00 on May 1, 2017, to 23:59:59 on May 24, 2017.

• 2,572,919 chattering events and 2,132,938 non-chattering events.
• Testing set: from 00:00:00 to 01:00:00 on May 25, 2017.

• 3,717 chattering events and 3,035 non-chattering events.
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Empirical Study

Fig. 4 The training accuracy and loss of proposed DNN
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Empirical Study

Fig. 5 The confusion matrix of testing data.

Fig. 6 The real-time SCADA alarm event detection.



12

SameDifferent

Fig. 7 The GUI of historical event searches.



13Fig. 8 The example of decision support system for chattering event.
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Conclusion

• A real-time machine learning framework was developed specifically for SCADA 
alarm event detection.

• The introduction of a DNN architecture enhances the ability to efficiently detect 
real-time alarm events.

• A specialized algorithm for historically relevant event search supports decision-
making.
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